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Previously…. 

Linear regression - not discussed, classed as 
basic regression. Model of a continuous 
dependent/outcome/response variable, that is 
normally distributed with a constant variance 
and has a mean linear function of the covariates 

We have discussed 2 further types of regression 

Logistic regression  

Proportional Hazards 

 

 



By the end of this session 

You will: 
– Know when Poisson Regression can be used 
– Be able to identify count data  
– Know how to use Poisson regression to adjust for 

basic time dependent variables 
– Know what assumptions are made by the model 
– Identify the strengths and weaknesses of Poisson 

regression 
– Be able to identify extensions to the basic Poisson 

model and when these can be used 
– Recognise Windows and menu functions in SPSS  



Poisson Regression 

1. Count data (ex. no. of surgical site infections) 

2. Time-to-event data (ex. time-to-stroke with 
time dependent covar) as alternative to survival 
analysis 

3. Binary data (ex. Received vaccine(yes/no) as 
alternative to logistic reg 

 



The Poisson Distribution 

Count data are observations that assume only 

non-negative integer values: 0, 1, 2, etc 

Count data have a Poisson distribution if the 

frequencies of the values have the following 

features: 

• Small-valued observations are quiet common 

• Starting at some value, frequencies decrease very rapidly 

• The average of observations is approximately equal to their 

variance 
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Count Data Violate OLS assumptions 

Count variables can be modelled with OLS 
regression but: 

– Linear models yield negative predicted values and counts 
are never negative 

Similar to the problem of the Linear Probability 
Model 

– Count variables are often highly skewed 

For example:  # smoked this week many people are zero 
or very low; a few people are very high 

Extreme skew violates the normality assumption 
of basic OLS regression. 

 



Count Data Examples 

Many dependent variables are counts:  Non-
negative integers 

• # hospitalisations a person has over a year 

• # parity 

• # lung opacities 

• Any other examples? 

 



Count data:  Example 
 

• Days in hospital for asthma exacerbations in 

the last year 

 



Data with Poisson Distribution 
One of the questions in a Health Sciences survey asked how many 
times a respondent visited a doctor in the past month. For a sample of 
150 people, the frequencies of the responses were 

 

 

 

 

Note that  

• 0 visits is quite a common response, 

• 1, 2, or 3 visits are the most frequent observations,  

• starting with 4 visits frequencies quickly decrease,  

• The average is 2.60 visits and is nearly equal to the variance, which 
is 2.63 visits squared. 

These are the features of a variable distributed according to a Poisson 
distribution. 

 

 

Number of 

visits 

0 1 2 3 4 5 6 7 8 

Number of 

respondents 

9 33 36 34 20 9 6 2 1 
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Formula for Poisson Distribution 
Poisson distributions are discrete with the probability function given by 

𝑃 𝑋 = 𝑛 =
𝜆𝑛𝑒−𝜆

𝑛!
  where 𝑛 = 0, 1, 2, …, and 𝑛! = 1 2 3 … 𝑛 − 1 𝑛    

is called the 𝐟𝐚𝐜𝐭𝐨𝐫𝐢𝐚𝐥 of 𝑛.  By definition, 0! = 1.  

Here 𝜆 is both the mean and variance of 𝑋, and is termed rate. 

Note that the probabilities of small values are reasonably high, and for 

larger values, the probabilities decrease very fast: 

𝑃 𝑋 = 0 = 𝑒−𝜆, 𝑃 𝑋 = 1 = 𝜆𝑒−𝜆, 𝑃 𝑋 = 2 =
𝜆2𝑒−𝜆

2
, 𝑃 𝑋 = 3 =

𝜆3𝑒−𝜆

6
, 

…, 𝑃 𝑋 = 10 =
𝜆10𝑒−𝜆

3,628,800
, … 
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Count data:  Example 
 

• Days in hospital for asthma exacerbations in the 
last year 

 



The Poisson Regression Model 

The Poisson regression model specifies that the dependent 
variable Y, given independent variables 𝑥1, 𝑥2, … , 𝑥𝑘,  follows a 
Poisson distribution with the probability function 

               𝑃 𝑌 = 𝑦 𝑥1,𝑥2,…,𝑥𝑘 =
𝜆𝑦𝑒−𝜆

𝑦!
 , 𝑦 = 0, 1, 2, … ,  

 

where the rate 𝜆 = 𝐸𝑥𝑝(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘),  

or, equivalently,  

                                𝑙𝑛 𝜆 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘. 
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Example in SPSS 
• SPSS Basic Syntax 

 
GENLIN n_outcome var BY dependent var(ORDER=ASCENDING) 

WITH covariates 

        /MODEL var specifictaion INTERCEPT=YES 

        DISTRIBUTION=POISSON LINK=LOG 

        /PRINT FIT SUMMARY SOLUTION (EXPONENTIATED). 

 

• SPSS Point-&-Click Instructions 

Analyze  Generalized Linear Models  Generalized Linear Models  Poisson 
loglinear (fill in the bubble)  Response tab  Identify dependent variable  
Predictors tab  Identify factors and covariates Model tab Identify the model 
Statistics tab Include exponential parameter estimates (check the box)  hit 
OK! 
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Interpretation of Coefficients 
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In Poisson Regression, Y is typically conceptualized as a rate  

Positive coefficients indicate higher rate and negative lower 

Like logit, Poisson models are non-linear so coefficients don’t have a simple 
linear interpretation. Unless we utilise the log form of the model; which 
exponentiates coefficients to aid interpretation giving incidence rate ratios 

If         is continuous, then the quantity                       

represents the estimated percent change in mean response 

when       is increased by one unit, and the other      variables are held fixed. 

 

If         is a categorical variable with several  levels, then 

represents the estimated percent ratio in  mean response for the level   

              and that for the reference level, provided the other      variables 

are unchanged.  

 

1x %100)1)ˆ(( 1 Exp

1x x

1x %100)ˆ( 1 Exp

11 x x



Example in SPSS 
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Parameter Estimates 

Parameter B Std. Error 95% Wald Confidence Interval Hypothesis Test Exp(B) 95% Wald Confidence Interval for 

Exp(B) 

Lower Upper Wald Chi-Square df Sig. Lower Upper 

(Intercept) -.672 .2612 -1.184 -.160 6.611 1 .010 .511 .306 .852 

[health=1] .588 .2511 .096 1.081 5.489 1 .019 1.801 1.101 2.946 

[health=2] .253 .2018 -.142 .649 1.576 1 .209 1.288 .867 1.913 

[health=3] .173 .1878 -.195 .541 .844 1 .358 1.188 .822 1.717 

[health=4] 0
a
 . . . . . . 1 . . 

age .026 .0048 .017 .035 29.144 1 .000 1.026 1.017 1.036 

(Scale) 1
b
          

Dependent Variable: n_visits 

Model: (Intercept), health, age 

a. Set to zero because this parameter is redundant. 

b. Fixed at the displayed value. 

 



Goodness-of-Fit Test 
• A measure of goodness of fit of the Poisson regression model is 

obtained by computing the deviance statistic of a base model 
against the full model. A base model includes only the intercept, 
while the full model includes the intercept and all the 𝑥- variables. 
The deviance is defined as -2 multiplied by the log-likelihood ratio, 

                   deviance = -2 ( ln L(base model)  -  ln L(full model) ). 

• The deviance is used as a test statistic for testing H0: the base 
model has a good fit against H1: the full model has a good fit. 
Under H0, the deviance has a chi-squared distribution with the 
degrees of freedom = number of 𝑥-variables in the full model. 

• If the deviance is large (formally, p-value < 0.05), then H0 is 
rejected and the conclusion is that the full model has a good fit. 
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Including an exposure variable 

• Poisson outcome variables are typically 
conceptualized as rates 

• X hours per week 

• X in past year 

• Cases may vary in exposure to “risk” of a given 
outcome 

• To properly model rates, we must account for the fact that 
some cases have greater exposure than others 

• Ex:  # disease episodes in lifetime 
– Older people have greater opportunity to have higher counts 

• Alternately, exposure may vary due to research design 
– Ex:  Some cases followed for longer time than others… 



   Poisson (and other count models) can address 

   varying exposure: 
 

 
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• Where ti = exposure time for case i 

   Easy to incorporate in SPSS: 
• Ex:  poisson depisodes SES income, exposure(age) 



Poisson Model Assumptions 

• Poisson regression makes a big assumption: 

That variance of  =  (“equidisperson”) 
• In other words, the mean and variance are the same 

• This assumption is often not met in real data 

• Dispersion is often greater than :  overdispersion  

– Consequence of overdispersion:  Standard errors 

will be underestimated 

• Potential for overconfidence in results; rejecting H0 

when you shouldn’t! 

• Note:  overdispersion doesn’t necessarily affect 

predicted counts (compared to alternative models). 



Poisson Model Assumptions 

• Overdispersion is most often caused by highly 

skewed dependent variables  

– Often due to variables with high numbers of zeros 

• Ex:  Number of traffic tickets per year 

• Most people have zero, some can have 50! 

• Mean of variable is low, but SD is high 

– Other examples of skewed outcomes 

• # of scholarly publications 

• # cigarettes smoked per day 

• # riots per year (for sample of cities in US). 



Further Points 

• Poisson & Negative binomial models suffer all the 
same basic issues as “normal” regression 

• Model specification / omitted variable bias 

• Multicollinearity 

• Outliers/influential cases 

– Also, it uses Maximum Likelihood 

• N > 500 = fine; N < 100 can be worrisome 

– Results aren’t necessarily wrong if N<100;  

– But it is a possibility; and hard to know when problems crop up 

• Plus ~10 cases per independent variable. 

 



Extensions to basic Poisson 



Poisson for binary data 
 

 

 
Model for logarithm of the no. of cases using poisson distribution and 
log link function  
Yields prevalence ratios e 
Watch out for estimates close to or out of bounds. 
Intercept 0 included in the model 
Not symmetric 
Use robust variance estimation (available in SPSS) to obtain valid Cis 
Sensitivity analysis necessary 
Compare results across models 
Be aware of the lack of symmetry 
Can only be used for cohort analyses not cross-sectional  



Poisson for binary data 
 

 

 

GENLIN outcome var BY dependent var (ORDER=ASCENDING) WITH covariates 

 /MODEL var specification INTERCEPT=YES 

DISTRIBUTION=POISSON LINK=LOG 

 /CRITERIA METHOD=FISHER(1) SCALE=1 COVB=ROBUST MAXITERATIONS=100 

MAXSTEPHALVING=5  

PCONVERGE=1E-006(ABSOLUTE) SINGULAR=1E-012 ANALYSISTYPE=3(WALD) CILEVEL=95 

CITYPE=WALD  

LIKELIHOOD=FULL 

/EMMEANS TABLES=smoking SCALE=ORIGINAL 

/MISSING CLASSMISSING=EXCLUDE 

/PRINT CPS DESCRIPTIVES MODELINFO FIT SUMMARY SOLUTION (EXPONENTIATED). 

SPSS Point-&-Click Instructions 

Analyze  Generalized Linear Models  Generalized Linear Models  Custom 
(fill in the bubble)  on drop down distribution menu choose poisson  On drop 
down link function menu choose log  Response tab  Identify dependent 
variable  Choose binary reference category Choose reference category first 
lowest value  Predictors tab  Identify factors and covariates  In options 
choose to exclude cases with missing data  In options choose  Model tab 
Identify the model Statistics tab Include exponential parameter estimates 
(check the box)  hit OK! 
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Zero-Inflated Poisson Regression 

Example.  If you randomly choose 100 students and ask them how 

many cigarettes they smoked yesterday. Some students will report 
that they smoked zero number of cigarettes. There are two possible 
reasons for that. Either they don’t smoke at all, or they happened 
not to smoke a single cigarette that day.   
  

Definition. A structural zero is recorded when the respondent’s 

behavior is not in the behavioral repertoire under study (e.g., the 
person doesn’t smoke). 

Definition. A chance zero is recorded when the respondent’s 

behavior is normally in the behavioral repertoire under study but 
just not during the studied time frame (e.g., just happened not to 
smoke yesterday). 
     



Zero-Inflated Poisson Regression 

Cigarettes smoked yesterday 
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Zero-Inflated Poisson Regression 

The presence of structural zeros inflates the number of 
zeros in the Poisson model, which makes the model 
invalid. A zero-inflated Poisson (ZIP) model is used 
instead.  In ZIP model, the response variable  
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Zero-Inflated Poisson Regression 

that is, 
  
                        
 
 

Here                                                   and   
 
where               are the predictors,                 are the regression 
coefficients,                  are the zero-inflated predictors responsible for 
inflation of the number of zeros in the model, and                 are the 
zero-inflated coefficients. 
The parameters of the model to be estimated from the data are  
                and  
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Overdispersion in Poisson Regression 

• In Poisson regression, it is assumed that mean and variance of 
the response variable are approximately the same. It is rarely 
the case with real-life data.  

• Often the variance is much larger than the mean. This situation 
is called overdispersion.  

• There is a formal test for overdispersion. And the suggested 
remedy is to fit Negative Binomial regression model instead.  



Negative Binomial Regression 

  Strategy:  Modify the Poisson model to 

   address overdispersion 
• Add an “error” term to the basic model: 

 

Coefficients interpreted same way as in poisson 
regression. 
Additional model assumptions: 

• Expected value of exponentiated error = 1 (ee = 1) 

• Exponentiated error is Gamma distributed 

• Use if these assumptions are more plausible than the 
equidispersion assumption! 
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Poisson or Negative Binomial 

  It is often useful to try both Poisson and 

  Negative Binomial models 
• Allows you to test for overdispersion 

• Use LRtest on alpha (a) to guide model choice 

– If you don’t suspect dispersion and alpha appears to 
be zero, use Poission Regression 

• It makes fewer assumptions 
– Such as gamma-distributed error. 



Zero-truncated Poisson & NB reg 

• Truncation –  the absence of information about 
cases in some range of a variable 

• Example:  Suppose we study income based on data from tax 
returns…   

– Cases with income below a certain value are not 
required to submit a tax return… so data is missing 

• Example:  Data on # crimes committed, taken from legal 
records 

– Individuals with zero crimes are not evident in data 
• Example:  An on-line survey of web use 

– Individuals with zero web use are not in data 

• Zero-truncated Poisson & Zero-truncated NB 
reg: Poisson & NB have been adapted to 
address truncated data 



Poisson regression in SPSS 
Statistical Product and Service Solutions 

– A popular Windows based computerised statistics 

package  

– Can handle large amounts pf complex data 

– Can be used to perform data entry, manipulation and 

analysis and to produce tables and graphs using only 

basic input  

– Can read open programming using BASIC 

– For further info ‘Discovering statistics using SPSS by 

Andy Field, 2009’ 



The Four Windows: Data Editor 

• Spreadsheet-like system for defining, entering, editing, and displaying 

data.  

• Two screen views Data View and Variable View  

• All information can be saved as one data file.  

 

 



The Four Windows: Output Viewer 

• Displays any outputs (eg. Tables, graphs) including any errors. 

Output can also be saved will be “spv.” 



The Four Windows: Syntax editor 

 Text editor for syntax composition.  

 



The Four Windows: Script Window 

 Further text editor for syntax composition. Provides 

the opportunity to write programs, in a BASIC-like 

language.  



File menu 



Data menu 



Transform menu 



Sub-menus 



Analyze menu 



Sub-menus 



Output 



Poisson for count data 











Poisson for binary data 















Poisson adding an exposure variable 

Complete the 
regression in the same 
manner as previously 
shown (depending on 
whether you are 
analysing count data 
or binary data). 
However, this time 
specify an offset 
variable (the time 
dependent variable) 
on the predictors tab. 


